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Abstract 

In paper I of this series [Giacovazzo (1979). Acta 
Crysr A35, 757-764] a tangent formula was obtained 
which is able to take into account uncertainty of the 
'known' phases. In paper II [Cascarano, Giacovazzo, 
Burla, Nunzi & Polidori (1984). Acta Cryst. A40, 
389-394] the asymptotical distribution of the statistic 
an was derived when the r component vectors 
Gj exp (iOj) were distributed according to Von Mises 
distributions M(Oj; ¢h, Gj). In the present paper this 
result is extended to the case in which the vectors 
Gj exp (iOj) are distributed according to a more gen- 
eral distribution M(Oj; ¢h,/3j). From the theoretical 
results a weighting scheme for the tangent procedure 
is derived which uses the first two moments of the an 
distribution. The scheme has been implemented in 
the SIR program; applications to real structures are 
presented. 

1. Symbols and notation 

See papers I and II (Giacovazzo, 1979; Cascarano, 
Giacovazzo, Burla, Nunzi & Polidori, 1984). 

2. Introduction 

The conditional distribution of ~h, given ~k, ~h-k 
and G=21EhEkEh_kl/N ~/2 is given by (Cochran, 
1955) 

P(~hl tPk, ~h-k, G) 

"" M ( ~ h ;  Oh, G)  

=[2Zdo(G)]-l exp[Gcos(~Oh-Oh)] (1) 

where On = ~k+ ~h-k. When several pairs of phases 
(~k, ~h-k) are known (1) is replaced by 

P(~hl{~k,, ~h--kj, Gj}) -- M(~0h; ~0h, Olfh) (2) 

0108-7673/87/030370-05501.50 

where 0h, the most efficient value for ~h, is given by 
(Karle & Hauptman, 1956, Karle & Karle, 1966) 

E I Ek, En-k, I sin (¢kj + ~h-kj) 
tan Oh = j =Th (3) 

Y'. I EkjEh-k, I COS (~Ok, + ~h-k,) Bh 
J 

and the corresponding variance for ~0h is given by 

a n =  2N-'/21EhI( T~, + U~,) '/2. (4) 

In the practical direct procedures ~0kj and ~Ph-k, are 
themselves uncertain and are dispersed around their 
estimates 0k, and 0h-kj. SO weighted tangent formulas 
such as (Germain, Main & Woolfson, 1971) 

E Wkj Wh-k, I Ekj Eh-k, I sin (0k, + 0h-k,) T~, 
tan 0h- 

with 

~. Wk, Wh-k, I Ek, Eh-k, I COS ( Ok, + 0h-k,) B~, 
(5) 

ah= 2N-'/21EhI( T~, 2 + B~,2) '/2 (6) 

can usefully replace (3) and (4). The weighting 
scheme afterwards adopted by Germain, Main & 
Woolfson (1971) was 

Wh = min (0"2ah, 1"0). (7) 

In paper I the reliability of the estimate Oh of ~0h 
was theroretically calculated even when Ck and Cb-k 
were unknown provided their distributions M(¢k; 
Ok, ak) and M(¢h-k; 0h-k, ah-k) were known. It was 
found that Ch is distributed around Oh according to 
the Von Mises function M(¢h; Oh, /3) where/3 is given 
by 

D,(/3) = D,(G)D,(ak)D,(ah_k). 
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If ~0h is estimated via r triplet relationships then ~oh 
is distributed according to M(~0h; 0h, ah)where 

tan Oh- ~ flj sin (Okj + Oh-k)~ ~ flj COS (Okj + Oh--kj) 
j = l  j----1 

(9) 
and 

ah  = /3j cos (Ok, + Oh-kj) 
j = l  

q 2 )  1/2 

+ f #jsin(Ok,+O,,_kj)J] . 
j--1 

(10) 

Equations (9) and (10) can be written in a form 
which emphasizes weights by assuming wj= fljlGj; 
however, the weight wj is associated with the j th  
triplet while in (5) the individual phases Okj and Oh-kj 
preserve individual weights. 

Unfortunately in some structures (Schenk, 1972) it 
happens that after tangent refinement three-phase 
invariants are closer to zero than their true values. 
Thus the enantiomorph is removed and pseudo- 
centrosymmetric solutions are found. 

Hull & Irwin (1978) devised a successful scheme 
which attempts to match the ah calculated by (6) with 
that expected from the probability distribution of the 
triplet phase relationships. In practice such a pro- 
cedure ignores the algebraic form of the distribution 
P(ah) and uses only its first moment. 

If available, the information about the second 
moment of P(ah) should certainly be useful. The 
asymptotic (r sufficiently large) probability distribu- 
tion of ah was calculated in paper II from this point 
of view. ah was considered as the modulus of the 
resultant of the complex vectors Gj exp (iOj), j=  
1, 2 , . . . ,  r, where Oj = ~okj + ~0h-kj are a large random 
sample of variables which are independently dis- 
tributed according to the Von Mises functions 
M( Oj; ~oh, Gj). 

For non-centrosymmetric space groups it was 
found that 

P(ah) N(ah;(ah) ,  2 --- o'..), (11) 

where N denotes the normal distribution and 

(Oth)= ~ GjD,(Gj), (12) 
j= l  

2 ½ ~ G~[I+ D2(Gj)-2D~(Gj)].  (13) O'~h = 
j=l  

Equations (12) and (13) provide both the first and 
the second moments of ah. However, they cannot be 
used for the tangent formula without modification in 
the weighting scheme because Oj=~kj+~Oh_kj, j=  
1 , . . . ,  r, are unknown. Since only estimates Okj and  
Oh-kj of ~kj and ~0h-kj are available during the phasing 
procedure, a mathematical procedure may be devised 

aiming at recovering the first moments of ah in these 
conditions. 

Such an approach is described in § 3 of this paper. 
In § 4 the weighting criteria and in § 5 the actual 
weighting procedure are described. Applications and 
conclusions are discussed in § 6. 

3. The distributions of ah and Oh when the distributions 
of Okj and Oh-kj are known 

In paper II the probability distributions P(ah) and 
P(~oh) were calculated with the assumption that Oj = 
~ok + ~Oh-kj, j ---- 1, 2 , . . . ,  r, were a random sample of 
variables distributed around ~oh according to M(Oj; 

G,). 
The problem reduces to that of calculating the 

distribution of the resultant of the complex vectors 
Gj exp (iOj) under the hypothesis that Oj is distributed 
according to M(Oj; ~h, (3i) [it may be noted that the 
concentration parameter of the function M is 
assumed to coincide with the modulus of the complex 
vector Gj exp (i0j) ]. 

During the phase expansion or the refinement pro- 
cess such an assumption is not satisfied. Indeed, only 
the estimates Okj of ~0kj and Oh-kj of ~0h-k, are known, 
which are supposed to be distributed around ~okj and 
~0h_k, according to M(0kl  , ~0kl, Ogkj ) and M(0h-kj, 
~Oh-kl, ah--kj) respectively, with known values of akj 
and ah-kj. 

In these conditions we have to calculate the proba- 
bility distributions P(ah) and P(~0h) on assuming, in 
accordance with (8), that Oj = 0k + 0h k is distributed j - - 1  
around ~h according to M(Oj; ~h, flj)" From a mathe- 
matical point of view the problem reduces to that of 
calculating the distribution of the resultant of the 
complex vectors Gj exp (iOj) under the hypothesis 
that Oj is distributed according to M(Oj; ~oh, flj). In 
accordance with the above remarks the approach 
described in §§ 4 and 5 of paper II may readily be 
modified to obtain the wanted probability distribu- 
tions. For example, for C and S defined by equation 
(19) of paper II we obtain [to be compared with 
equation (20a) of paper II] 

(C)=(1/~,1) ~ GjDl(fli) cos ~h, 
j----1 

(S)=(1/~,1) ~ GjDl(flj)sin ~oh. 
j = l  

After some calculations the resultant formulas for 
the non-centrosymmetric case are obtained: 

P(~oh)----- M(~Ph; 0h, (ah)), (14) 

where 0h is given by (9) and (ah) by 

In its turn 

(15) 
j=l 

e(txh) -- N(Cth, (ah), o'2), (16) 
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where Table 1. The weight w in specific cases 

o'2, =½ ~ G~[1 + D2(fl~)-2D~(/3.~)]. (17) 
j = l  

Equations (15) and (17) can usefully be compared 
with equations (34) and (35) of paper II respectively; 
in paper II, Gj was both the modulus of the j th 
component vector and the concentration parameter 
of its distribution, while in (17), Gj is still the modulus 
of the j th vector but the concentration parameter of 
its distribution coincides with/3i- 

F o r  c o n v e n i e n c e ,  in  p a r e n t h e s e s  t h e  v a l u e s  ( ( a h ) ;  0"20th) a r e  g i v e n .  

r = 5  r = 1 0  r = 2 0  

/3 = 0 . 4 ,  A h =  0.15 w = 0.905 w = 0 . 9 5 0  w = 0.970 
(0.39; 0.38) (0.78; 0.75) (0-16; 1.51) 

/3 = 0-4 , / I  n = 0.30 w = 0.672 w = 0.820 w -- 0.905 
(0-39; 0.38) (0.78; 0.75) (0.16; 1.51) 

/3 = 2.0, A n = 0"30 w ---- 0"995 w = 0"998 w = 0"999 
(6"97; 3"29) (13"95; 6"57) (27"91; 13"14) 

/3 = 2"0, A h = I'00 w = 0-951 w = 0"975 w = 0"987 

(6"98; 3"29) (13"95; 6"57) (27"91; 13"14) 

/3 = 2"0, A n = 3-00 w = 0-633 w = 0"796 w = 0"892 

(6"98; 3"29) (13"95; 6-57) (27"91; 13-14) 

4. A weighting criterion for the tangent formula in 
non-centrosymmetric space groups 

P ( t ~ h )  and P ( ~ 0 h )  rely on the same probabilistic 
assumptions. Therefore, if the experimental value of 
ah for large values of r differs significantly from (ah), 
then it may be guessed that the 0j's are not distributed 
around eh according to the theoretical assumptions. 
Consequently, Oh appears as a biased estimate of eh. 
Conversely, if ah = (ah) the phase relationship 

0h "~ ~h (18) 

is experimentally supported. Such an argument is in 
practice the statistical basis of Hull & Irwin's (1978) 
weighting scheme. 

Our results in § 3 suggested to us the following 
weight, which exploits the first two moments of the 
distribution P(ah): 

Wh = [ P(ah) / P( al, = (ah)) ]" 

-{exp[-(al, 2 2 . - -  - -  (O~h))  / 2 0 % h ] }  , (19) 

where n is a rational positive number. Such a scheme 
has the following properties: 

(a) 

0 < - Wh < -- 1; 

(b) 

Wh=l if ah=(ah),  wh<lotherwise;  

(c) the observed discrepancy Ah= ah--(ah) has a 
different statistical meaning according to the distribu- 
tion P(ah). Indeed, if the variance of ab is small, an 
experimental large Ah may strongly reduce our 
confidence in Oh, while the same zlb coupled with a 
large variance in practice preserves it. This agrees 
well with common sense. 

Every weighting scheme allots small weights to 
phases with small a~ values. Thus the main aim of 
the above theory is to reduce our confidence in Oh 
when ab>(ah).  Accordingly, if ah<(ab),  equations 
(9) and (10) are used without modifications; if ab> 
(ab) then ab = (Ceh) W h .  

Even if equations (14)-(17) are an indisputable 
outcome of the theory their use requires some 
observations: 

(a) The equations have asymptotical nature. In 
other words, r is required to be sufficiently large, 
while in the usual tangent procedures r varies from 
1 to (roughly) 30. We calculate Wh only if r > 4. 

(b) The theory can be successfully applied to finite 
samples [the available set of the vectors Gj exp (i0j)] 
provided they are random samples of the entire popu- 
lation. That does not usually occur in practice for 
various reasons: small sample sizes, structural regu- 
larities violating the basic assumptions of the prob- 
abilistic method, systematic errors in the estimations 
of the G's, etc. 

Such troubles cannot be avoided but they can cer- 
tainly be reduced by a proper choice of n in (19). 
Too small values of n would be ineffective, large 
values would reduce the reliability of the phases 
having ah > (ah) tOO much, so that only phases having 
ah<(ah)  will pilot the phase-extension procedure, 
contrary to common sense. We found that n -  ½ is a 
sensible choice. 

In order to give some numerical examples, let us 
suppose that in (17)/3j =/3 forj  = 1, 2 , . . . ,  r and  r =  5, 
10, 20. In Table 1 values of Wh = W are given for 
specific values of Ah and/3. It may be noted that: 

(a) for fixed/3 and r, wb decreases if Ah increases, 
according to expectations (compare rows 1 and 2 of 
the table); 

(b) for fixed/3 and Ab, wh increases with r (our 
confidence in Oh has to be larger when Ab is observed 
for large samples, since larger values of (ah) and of 

2 arise)" O',- ,  h 

(c) for the same reason, for fixed r and Ah, Wh 
increases with/3 (compare rows 2 and 3). 

5. The weighting scheme 

The theory described above has been implemented 
in the SIR program (Cascarano, Giacovazzo, Burla, 
Nunzi, Polidori, Camalli, Spagna & Viterbo, 1985) 
according to the following scheme. 

5(a) The weighted convergence method 

The convergence method as described by Germain, 
Main & Woolfson (1971) calculates ah as given by 



M. C. BURLA, G. CASCARANO, C. GIACOVAZZO, A. NUNZI AND G. POLIDORI 373 

(12) for each reflexion h used in the Y~2 list. The 
reflexion with the lowest (ah) is eliminated together 
with all the phase relationships in which the reflexion 
is involved. Then the values (ah) are recalculated 
again and the rettexion with the smallest (ah) is elimi- 
nated together with the phase relationship in which 
it is involved. The process thus converges on that set 
of reflexions which are linked together best of all in 
the probabilistic sense. 

The above procedure has been modified by remem- 
bering that in accordance with (9) and (10) the con- 
centration parameter ah of the relation 0h=~0b 
depends on the concentration parameters ak, and 

1/2 • ah-kj, and on Gj=2[EhEk~Eh_kjI/N ,J= 1 ,2 , . . .  r. 
Thus, in the absence of phase information, when only 
the statistic (ah) may be estimated, (12) may be 
replaced by a formula which takes into account the 
expected uncertainty of the phases 0j = 0kj + 0h-k~ on 
which Oh depends. If 0kj and 0h-k~ were really dis- 
persed according to concentration parameters (akj) 
and (an-~) respectively, then 

(ah) = ~ G;Dl(Gj)Dl((ak))D~((ah_u,)). (20) 
j = l  

Actually ak, and ah-k, do not coincide with (ak,) 
and (ah-k~), ffut are disI~ersed around these values. 
Thus (ah) is overestimated by (20): in the practical 
procedure we empirically use (ah)/2 instead of (ah). 
After that, the convergence method described by 
Germain, Main & Woolfson works without further 
modifications. 

It is worth specifying that: 
(a) Equations (12) and (20) have different statis- 

tical meanings. Equation (12) is the expected value 
of ah relative to ~0h when the phases 0. = ~0kj + ~0h k. j • _ j 

are considered. Equation (20) is the expected value 
of ab relative to 0h when the average is taken over 
independent collections of r elements 0~ = 0kj + 0h-kj, 
each element dispersed around ~0k, + ~0b-kj according 
to the concentration parameters (&kj) and (ah-kj). 

(b) The classical and our convergence procedures 
usually lead to different starting sets. 

5(b) Weighting of the starting set 

The starting set of phases usually contains: (a) 
origin- and enantiomorph-defining phases; (b) 
phases determined by probabilistic formulas (i. e. one. 
phase seminvariants); (c) symbolic phases which may 
be represented by quadrant permutation of magic- 
integer methods (Main, 1977). 

All the phases 0b entering the starting set are con- 
sidered to be distributed around the true values ~oh 
according to the Von Mises distributions M(Ob; ¢b, 
ah) (see paper I, § 8). 

Phases in category (a), which are known without 
uncertainty, are assumed to be distributed according 
to M(¢h; 0h, 100) which approximates the Dirac 
function 8(~oh- 0,). 

Table 2. orb values associated with starting-set phases 
represented by magic-integer sequences 

n S e q u e n c e  No .  o f  sets R.m.s .  e r ror  ah  
(0) 

1 1 4 26 5"5 
2 2 3 12 29 4-7 
3 3 4 5 20 37 3"2 
4 5 7 8 9 32 42 2"6 
5 8 11 13 14 15 50 45 2"4 
6 13 18 21 23 24 25 80 47 2"2 
7 21 29 34 37 39 40 41 128 48 2"1 
8 34 47 55 60 63 65 66 67 206 49 2"0 

The Von Mises parameters for phases in category 
(b) are provided by the subroutine estimating one- 
phase structure seminvariants via the second rep- 
resentation (Cascarano, Giacovazzo, Calabrese, 
Burla, Nunzi, Polidori & Viterbo, 1984). 

Phases in category (c) represented by quadrant 
permutation (including enantiomorph-defining 
phases whose values are unrestricted by symmetry) 
are considered to be distributed (see paper I) accord- 
ing to M(Oh; ~Oh, 5"5), where Oh is the median value 
in the quadrant. Phases in category (c) whose values 
are restricted by symmetry are distributed according 
to M(~Oh; Oh, 100) because all the symmetry-allowed 
phases are assigned by phase permutation. 

Symbolic phases represented by a magic-integer 
sequence are assumed to be distributed according to 
M(Oh; ~Oh, ah) where ah is the concentration param- 
eter of the Von Mises distribution having the square 
root of the variance equal to the root-mean-square 
error in the phases expected for that magic-integer 
sequence. From Table 2 the largest ab are associated 
with the smallest integer sequences (with which the 
smallest expected phase errors are associated). 

5(c) The weighted divergence procedure 

The divergence path is fixed by (15), where/3j is 
calculated according to (8). When ah is not available, 
(ab) is used. 

5(d) The weighted tangent procedure 

Expressions (9) and (10) are used: if ah> (ab)then 
the concentration parameter (ah)Wh is associated with 
Oh, where Wh is given by (19) for n =½. 

6. Applications 

The SIR program has been applied to seven crystal 
structures, the main data of which are described in 
Table 3. Corresponding to the different options 
offered by SIR the following procedures have been 
used: 

(a) A weighted tangent formula according to (5) 
and (7) (this is the classical MULTAN weighting 
scheme). 

(b) A weighted tangent formula according to the 
new criteria described in § 5. 
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Table 3. Relevant  data f o r  seven crystal structures 

Data are given in the order: code title (Code), chemical formula (CF), space group (SG), number of chemical formulas in the unit cell 
(Z), number of nonhydrogen atoms in the unit cell (N). In the last three columns crosses mark successful applications by the SIR 
procedure in options (c) and (d), and by the Hull & Irwin (1978) method (HI). 

Code CF SG Z N SIR(c) SIR(d) HI 
RIFOLt C39 H49 NOI3 P2 t 2 106 + + 
PROLIN~: C26 H4o N407 P21 2 74 + + 
ERGO* C2s Ha40 P212t 21 8 232 
MUNICHI* C2oH16 C2 8 160 
CEPHAL* Cts H21 03 N C2 8 176 
DIOLE* CtoHt8 02 I712d 16 192 + + 
APAPA* C3oH37 NtsOi6 P2.6H20 P4 t 2 ! 2 8 552 + + + 

* Experimental data and references can be found on the magnetic tape distributed by the York crystallographic group, to which the reader is referred. 
t Burla, Cerrini, Lamba, Nunzi & Polidori (1987). 
~t Colapietro, De Santis, Palleschi & Spagna (1987). 

(c) First, the reliabilities of the triplets are esti- 
mated via the second representation formula P10 
(Cascarano, Giacovazzo, Camalli, Spagna, Burla, 
Nunzi & Polidori, 1984). Then, instead of G, the new 
concentration parameter G' provided by the P10 
formula is used in (5) and (7). 

(d) The concentration parameter G' provided by 
the P10 formula is associated with the new weighting 
scheme described in § 5. 

For every option a default procedure with five 
magic-integer symbols in the starting set has been 
used. 

Options (c) and (d) proved very much more 
effective than options (a) and (b). That is not surpris- 
ing since the P10 formula for estimating a single 
triplet exploits a subset of diffraction intensities much 
larger than the classical Cochran formula. 

The outcome for options (c) and (d) is shown in 
Table 3" for completeness, in the last column of Table 
3 data obtained by application of the Hull & Irwin 
(1978) weighting scheme are reported (also via a 
default procedure with five symbols in the starting 
set). Crosses in columns 6, 7 and 8 mark successful 
trials (i.e. the correct solution has been found among 
the three sets with the largest figures of merit). 

From Table 3 it cannot be deduced that the Hull 
& Irwin (1978) scheme or S I R  are unable to solve 
the unlabelled crystal structures, but only that the 
correct solution has not been found, after a default 
process, among the three sets marked by the largest 
figures of merit. 

For example, the correct solution for CEPHAL is 
found by S I R  in option (d) if two symbols with 
restricted phase and three magic-integer symbols of 

general type are used in the starting set instead of 
five symbols with unrestricted phase (correspond- 
ingly, 36 sets per trial instead of 24). 

Furthermore, ERGO is solved by S I R  in option 
(d) if seven general symbols represented by magic 
integers are introduced into the starting set. We were 
not able to find the correct solutions for ERGO and 
CEPHAL by application of S I R  in option (c). 

Table 3 suggests that S I R  is a powerful method for 
solving crystal strfctures and is an alternative to other 
packages of proven usefulness. 
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